Attention-Based Personalized Encoder-Decoder Model for Local Citation Recommendation
نویسندگان
چکیده
منابع مشابه
Video Summarization with Attention-Based Encoder-Decoder Networks
This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanism to mimic the way of selecting the keyshots of human. To this end, we propose a novel video summariz...
متن کاملImplicit Distortion and Fertility Models for Attention-based Encoder-Decoder NMT Model
Neural machine translation has shown very promising results lately. Most NMT models follow the encoder-decoder framework. To make encoder-decoder models more flexible, attention mechanism was introduced to machine translation and also other tasks like speech recognition and image captioning. We observe that the quality of translation by attention-based encoder-decoder can be significantly damag...
متن کاملPersonalized Citation Recommendation via Convolutional Neural Networks
Automatic citation recommendation based on citation context, together with consideration of users’ preference and writing patterns is an emerging research topic. In this paper, we propose a novel personalized convolutional neural networks (p-CNN) discriminatively trained by maximizing the conditional likelihood of the cited documents given a citation context. The proposed model not only nicely ...
متن کاملJapanese Text Normalization with Encoder-Decoder Model
Text normalization is the task of transforming lexical variants to their canonical forms. We model the problem of text normalization as a character-level sequence to sequence learning problem and present a neural encoder-decoder model for solving it. To train the encoder-decoder model, many sentences pairs are generally required. However, Japanese non-standard canonical pairs are scarce in the ...
متن کاملContent-Based Citation Recommendation
We present a content-based method for recommending citations in an academic paper draft. We embed a given query document into a vector space, then use its nearest neighbors as candidates, and rerank the candidates using a discriminative model trained to distinguish between observed and unobserved citations. Unlike previous work, our method does not require metadata such as author names which ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2019
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2019/1232581